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The Large Hadron Collider (LHC)

p p

!s"14 TeV

Circumference: 16.5 miles
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LHC in the Bay

LHC

- protons go really fast: 99.999999% of the speed of light
- make a full turn 11254 times per second
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LHC Accelerator

April 26th 2007

• 30,000 tons of 8.4T dipole
magnets

• Cooled to 1.9K with 90 tons of
liquid helium

• Energy of beam = 362 MJ

– Kinetic energy of 15 ton truck at
500 mph
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Luminosity

• Single most important quantity

– Drives our ability to detect new processes

– Rate of physics processes per unit time directly

related:

L=L=
ffrevrev n nbunchbunch  NNpp

22

AA

revolving frequency: frev=11254/s

#bunches: nbunch=2835

#protons / bunch: Np= 1011

Area of beams: A~40 µm

NNobsobs= = !!LdtLdt  ··  ""  ··  ##
Cross section Cross section ##::

Given by Nature Given by Nature 

(calc. by theorists)(calc. by theorists)

Ability to observe something depends on Nobs

Efficiency:Efficiency:

optimized byoptimized by

experimentalistexperimentalist
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What Do We Hope to find at LHC?

• Answers to very fundamental and simple questions:

– Why do electrons have mass?
• Possible answer: The Higgs boson

– Why is gravity so weak?
• Possible answer: supersymmetric particles

– Or ultimately
• Does a Universe have to be like ours?

• Or, is it random that ours is as it is?

• NB: This planet (and we!) would not exist if it was otherwise
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top quark

anti-top quark

!!!!!!!!!!!!!!!!!!!
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 Elementary Particles: Matter
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-   -   -                       -   -   -     -       -

(Mass proportional to area shown but all sizes still < 10-19 m)

Why are there so many leptons and quarks?
And, why do they all have different masses?
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Origin of Mass

Nothing in the universe Something in the universe

Higgs Particles interact with other particles the stronger

the heavier they are:

- distance ~10-17 cm   => will be found at LHC!

x
x

xx x

xx

x

Electron

Photon

Top Quark

m=0.511 MeV/cm=0.511 MeV/c22

m=0m=0

M~172000 M~172000 MeVMeV/c/c22
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How the Higgs Field gives Mass

D. Miller / UCL

Cocktail party:

Guests are evenly spread

Arrival of celebrity:

Guests cluster near celebrity

Celebrity looses momentum <=> acquires mass

(guests act like Higgs field)
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Why is Gravity so weak compared

to the other forces?
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 ZW+, W-

 Elementary Particles: Force Carriers

gluons

electromagnetic weak strong

electroweak

Grand Unified force ?

graviton

gravity

Theory of Everything ?

photon: '



13

The “finetuning problem”

• Why is gravity is so much weaker than the

weak force?

– Newton: GN=6.67 x 10-11 m3kg/s2 ~10-38 GeV-2

– Fermi: GF=1.17 x 10-5 GeV-2

• Or why is the W boson mass so small?

– Weak scale: MW ~1/Mweak=1/!GF = 3x102 GeV

– Natural scale: MPlanck=1/!GN~1019 GeV

*“Finetuning” required to make W and Higgs mass small
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Finetuning Problem

• Free parameter m2
H

tree “finetuned” to cancel huge

corrections so that
     200 GeV= 1763409820456210415 GeV- 1763409820456210215 GeV

• Isn’t that Crazy!?!

– Some unknown ad-hoc parameter introduced with superb

precision

• We were very lucky it worked out like this!

– Like finding a pen on a table like this

m2
H ( (200 GeV)2 = m2

H
tree + ) m2

H
top + ) m2

H
gauge + ) m2

H
higgs

Seems wrong somehow
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Solving the finetuning problem

• Add new particles

– New loops cancel old loops!

• Size of loops naturally the same

– No hugely tuned ad-hoc

parameter needed

• “Supersymmetric” particles

– Each standard model particle

has a partner, e.g.:

• Electron => Selectron

• Quark => Squark

• Photon => Photino

• W boson => Wino

Superpartners! 
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Already happened in History!

• Might also seem crazy to have another set of

particles introduced to solve aesthetic problem

• Analogy in electromagnetism:

– Free electron has Coulomb field:

– Mass receives corrections due to Coulomb field:

• me
2=me

2+EC/c2

• With re<10-17 cm:

– Solution: the positron!

Problem was not as bad as today’s but it resulted

in new particle species: anti-particles

<<mec
2

Hitoshi Hitoshi MurayamaMurayama, UC Berkeley, UC Berkeley
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More virtues of Supersymmetry (SUSY)

• Electromagnetic, strong
and weak force unify!
– Miss unification in SM

(barely)

– Exactly unify in SUSY!

• Includes candidate for
dark matter with 0.1-1
TeV mass
– Cosmology data point to

such a particle

– 5 times more than
ordinary matter

If SUSY particles are the solution to finetuning problem

they will be found at the LHC

SUSYSUSY
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Proton-proton collisions

Complex events need to be resolved by

clever detectors and physicists

7 7 TeVTeV 7 7 TeVTeV
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The Experimental Challenge

• Measured hits in detector

• => use hits to reconstruct particle paths and energies

• => estimate background processes

• => understand the underlying physics

Higgs

Supersymmetry
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Particle Identification
• Detector designed to separate electrons, photons,

muons, neutral and charged hadrons
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ATLAS and CMS Detectors

152112,500CMS

22427,000ATLAS

Height

(m)

Length

(m)

Weight

(tons)

22

ATLAS and CMS in Berlin

ATLAS

CMS
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Detector Mass in Perspective

CMS is 30% heavier than the Eiffel tower

CMS

Eiffel

tower
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Detailed Layout

• About 100 million separate readout channels

– 3000 km of cables
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Silicon Tracking Detectors

• Charged particle traverses silicon
sensor (semi-conductor)
– Sets free charge carriers

• Drift to electrodes

• Measured charge gets collected at
electrodes

– Thus we find out position of particle
• Resolution typically 15 µm

• Detector placed inside magnetic
field:
– Lorentz force: FL ~ q v x B

• Hits along trajectory are fit to form a
track
– deviation from straight line proportional

to momentum (p~v)

– Direction of curvature tells us the
electric charge

charged
particle

low p

high p
+

–

h+ e-

..
BB
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The ATLAS Pixel Detector

• Cylinder: L=1.4 m , R=12.25 cm

• 80,000,000 individual pixels arranged in modules:

– 16 chips per module, 2880 pixels per chip => 46080 pixels/module

– Distance between pixels: 50 µm (“pitch”)

• Designed and built largely in the United States

2 cm

6 cm

module
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Tracking Detectors
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Electromagnetic Calorimeter

• Sandwich structure:

– Absorber material: lead (Pb)

– Active material: Liquid Argon (LAr)

• Energy measurement:

– Electromagnetic shower produced

through interactions with lead

– Photons collected in Liquid Argon

– N(photons)+ energy of particle

– Photomultiplier tube (“PMT”)

• Amplification of signal => readout

• Position measurement:

– High spatial granularity =>  position

known

e or '

Pb

LAr

PMTPMT
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Muon Systems and Calorimeters
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Cosmic Muon Data

Experiments are currently

preparing for LHC data taking

- analysis of cosmic muon data
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2000 Physicists from all over the World

 (including 400 PhD students)

+ many technician and engineers
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Enormous Data Volumes

• Pushing the computing limits!

– 1 second of LHC data: 1000 GigaBytes

• 10,000 sets of the Encyclopedia Britannica

– 1 year of of LHC data: 10,000,000 GB

• 25 km tower of CD’s (~2 x earth diameter)

– 10 years of LHC data:

• All the words spoken by humankind since

its appearance on earth

• Solution: the “Grid”

– Global distribution of CPU power

• More than 100 CPU farms worldwide share

computing power
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Some Example Analyses

Finding the Higgs boson:

-with photons

-with Z-bosons

Finding a Supersymmetric

World
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Rates of Processes

• Everything happens probabilistically

• And competing “background processes” that can be large

– Key experimental work is to suppress/reduce and understand them

8 / dayH,''

<1 / minSUSY

1 / secTop quark

10 / secW,e$

600 million / secany

RateProcess
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Finding the Higgs Boson (with photons)

• Find 2 high energy

photons

– If M(H)<130 GeV/c2

• Separate signal from

backgrounds

– Backgrounds can

look exactly the

same

– but for '’s from Higgs:

M(H)=M('')=![(E1+E2)
2-(p1+p2)

2]
M('')

background

Higgs ,''

qq

qq
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It will emerge with time

# Ldt = 0.1 fb-1: NHiggs " 2 (year: 2008/2009)

background

“Pseudo-Data”
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It will emerge with time

# Ldt = 1 fb-1: NHiggs " 25 (year: 2009)
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There it is!

# Ldt = 30 fb-1: NHiggs " 750 (year: 2011/2012?)
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Finding the Higgs Boson (with Z’s)

• Find 4 high energy

muons or electrons

– If M(H)>130 GeV/c2

• Separate signal from

backgrounds

– Again calculating the

invariant mass

– Backgrounds much

smaller than in

diphoton case:

• Easier!

Higgs signal

simulated event

Background

Z

Z

µµ++
µµ--

µµ++
µµ--

µ

µ

µµ

M(eeee)
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Finding a Supersymmetric World

• Supersymmetric particles decay
into ordinary particles:
– Measure decay products

– Dark matter particle (-1
0) escapes

detector unseen:

• Momentum balance tell us presence of
dark matter particles (“missing ET”)

• Search strategy:
– Search for many high energy particles

plus large missing ET

Might find the missing Dark Matter in the Universe

~

~
!iET

i+missing ET

SUSY

background

~
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Many Other Possibilities…

H. Murayama, UC Berkeley
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When ? LHC Schedule

• Accelerator currently cooling down to 1.9 K

• 1st beams in June 2008

• 1st collisions in August/September (at ~10 TeV)

• 1st physics results hopefully next year

• 1st discoveries in 2009/2010?
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• The LHC will finally probe the “TeV scale” (r = 10-17 cm)
– Known to be special since 1934

• After a 15 year design and construction phase the LHC
experiments are taking data!
– Cosmic muons now, pp collisions later this year

• Biggest experiments ever built
– >2000 physicists per experiment work towards a common goal

• LHC will definitely answer some (and hopefully many)
fundamental questions
– Within the next 2-5 years we’ll know a lot more

Conclusions
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Further Information

• CERN: http://public.web.cern.ch

• Particle Physics: http://particleadventure.org

• Experiments:

– ATLAS: http://www.atlas.ch

– CMS: http://cmsinfo.cern.ch/outreach/

(including many movies)


